SHACIRA - Scalable HAsh-grid Compression for Implicit Neural Representations
ICCV 2023
S. Girish, A. Shrivastava, K. Gupta
An end-to-end compression framework for feature-grid INRs
Web /
Code /
arXiv
ChopNLearn - Generating Object-State Compositions
ICCV 2023
N. Saini, H. Wang, A. Swaminathan, V. Jayasundara, B. He, K. Gupta, A. Shrivastava
A benchmark for recognizing and generating object-state compositions from images and videos
Web /
Code /
arXiv
ASIC - Aligning Sparse in-the-wild Image Collections
ICCV 2023
K. Gupta, V. Jampani, C. Esteves, A. Shrivastava, A. Makadia, N. Snavely, A. Kar
Learning dense correspondences for long-tail in-the-wild image collections
Web /
Code /
arXiv
Teaching Matters - Investigating the Role of Supervision in Vision Transformers
CVPR 2023
M. Walmer, S. Suri, K. Gupta, A. Shrivastava
ViTs trained via different supervisions show diverse range of behaviors in their representations and downstream tasks.
Web /
Code /
arXiv
LilNetX - Lightweight Networks with EXtreme Model Compression and Structured Sparsification
ICLR 2023
S. Girish, K. Gupta, S. Singh, A. Shrivastava
A neural network optimization scheme that allows for trade-off between accuracy and compression during training itself
Web /
Code /
arXiv
Neural Space-filling Curves
ECCV 2022
H. Wang, K. Gupta, L. Davis, A. Shrivastava
A data-driven approach to infer a context-based scan order for a set of images. Allows for better compression and sequential generative models
Web /
Code /
arXiv
PatchGame - Learning to Signal in Referential Games
NeurIPS 2021
K. Gupta, G. Somepalli, A. Gupta, V. Jayasundara, M. Zwicker, A. Shrivastava
Emergent communication via mid-level patches in a referential game played on a large-scale image dataset
Web /
Code /
arXiv
LayoutTransformer - Layout Generation with Self-attention
ICCV 2021
K. Gupta, A. Achille, J. Lazarow, L. Davis, V. Mahadevan, A. Shrivastava
A generative model for layouts; results on diverse real world datasets (3D shapes, image, documents, app wireframes)
Web /
Code /
arXiv
The Lottery Ticket Hypothesis for Object Recognition
CVPR 2021
S. Girish, S. Maiya, K. Gupta, H. Chen, L. Davis, A. Shrivastava
How to find sparse neural networks (with up to 80% overall sparsity) on the tasks of object detection, segmentation, and pose estimation
Web /
Code /
arXiv
Improved Modeling of 3D Shapes with Multi-view Depth Maps
3DV 2020
K. Gupta, S. Jabbireddy, K. Shah, A. Shrivastava, M. Zwicker
A novel encoder-decoder generative model for 3D shapes using multi-view depth maps; SOTA results on single view reconstruction and generation
Web /
Code /
arXiv
PatchVAE - Learning Local Latent Codes for Recognition
CVPR 2020
K. Gupta, S. Singh, A. Shrivastava
A patch-based VAE formulation to learn interesting parts of image, instead of the entire image. Our bottleneck formulation learns representation better for visual recognition tasks
Web /
Code /
arXiv
A deep dive into location-based communities in social discovery networks
COMCOM 2017
K. Thilakarathna, S. Seneviratne, K. Gupta, M. Kaafar, A. Seneviratne
A study of the characteristics and evolution of location-based social discovery networks
Web /
Code /
Paper
Global pose estimation with limited gps and long range visual odometry
ICRA 2012
J. Rehder, K. Gupta, S. Nuske, S. Singh
An approach to estimate and correct for the bias in the motion estimate due to a lack of close range features in outdoors when using stereo visual odometry
Web /
Code /
Paper
Modeling and Calibration Visual Yield Estimates in Vineyards
FSR 2012, CMU Tech Report
S. Stephen, S. Achar, K. Gupta, S. Narasimhan, S. Singh
An approach to predict vineyard yield automatically and non-destructively using images collected from vehicles driving along vineyard rows
Web /
Code /
Paper
A Compression Scheme for Handwritten Patterns
ICDAR 2011
K. Gupta, M. Bansal, S. Chaudhury
A method to compress hand-written patterns recorded as strokes in order of their temporal occurrence using B-Spline Curves
Web /
Code /
Paper